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SUMMARY

A numerical method is developed for the minimization of deviations of real tooth surfaces from

the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of

machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined

by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the

proper correction of initially applied machine-tool settings.

The contents of accomplished research project cover the following topics:

(i) Description of the principle of coordinate measurements of gear tooth surfaces.

(ii) Derivation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and refer-

ences for spiral bevel gears).

(iii) Determination of the reference point and the grid.

(iv) Determination of deviations of real tooth surfaces at the points of the grid.

(v) Determination of required corrections of machine-tool settings for minimization of deviations.

The procedure for minimization of deviations is based on numerical solution of an overdeter-

mined system of n linear equations in rn unknowns (rn _ n), where n is the number of points of

measurements and rn is the number of parameters of applied machine-tool settings to be corrected.

The developed approach is illustrated with numerical examples.



CHAPTER 1

INTRODUCTION

The development of computer controlled machines has opened new opportunities for high precision

generation of double-curvatured surfaces-gear tooth surfaces, surfaces of rotors, propellers, screws,

etc. However, these opportunities can only be realized if the surface generation is complemented

with coordinate measurements of the manufactured surfaces. Such measurements allow one to:

(i) Identify the real machine-tool settings and correct them if necessary (important for generation

of master gears of high precision);

(ii) Determine the deviations of the real surface from the theoretical one, and minimize the

deviations by correction of the initially applied machine-tool settings.

In the second case there are many factors that cause the deviations: (a) distortion of the surface

by heat-treatment, (b) errors caused by deflection in the process of manufacturing, (c) errors of

installment of machine-tool settings, etc. Measuring the prototype of the surface (for instance, the

first gear of the being manufactured set), we can determine the deviations at n measuring points

and then minimize the deviations by controlling m <_ n parameters of machine-tool settings.

The Gleason Works (USA), Oerlikon (Switzerland), Caterpillar (USA), and the Ingersoll Milling

Machine Company (USA), and other Companies are pioneers in the development of computer

controlled machine for the generation of spiral bevel gears, hypoid gears, spur gears, helical gears,



andotherobjects.The GleasonWorksengineershavedevelopedanautomatedsystemand theG-

AGEprogramfor theautomaticevaluationofrealgeartoothsurfacesthat isbasedonmeasurements

takenby usingthe Zeissmachine(GleasonWorks,1987)but without presentingthe mathematical

descriptionof the procedure[1]. The Caterpillarengineershavedevelopedtheir ownmachinefor

coordinatemeasurementsand haveusedit for the evaluationand correctionof real gear tooth

surfaces(ChambersandBrown,1987)but withoutpresentingthealgorithmandanalyticalmethod

that they usedin the measurementprocedurefor spiral bevelgears[2]. It canbe expectedthat

coordinatemeasurementof complicatedsurfaceswill find wideapplicationin industry.

Thereport coversthe followingtopics:

(1) Determinationof machine-toolsettingsfor a real surface.Hereit is assumedthat the devia-

tionsof therealsurfaceformthe theoreticalonearecausedonlyby theerrorsofmachine-tool

settings.The proposedapproachallowsthe requiredcorrectionsof machine-toolsetting to

be determinedbasedon the dataof coordinatemeasurements.The solutionto this problem

is significantfor generationof master-gearsof highprecision.

(2) Determinationof correctionsof machine-toolsettingsfor a realsurfacewith irregulardevia-

tions. Suchdeviationscanbecausedby heat-treatment,deflectionin thecourseof manufac-

turing, andother factors. Theproposedapproachassumesthat the manufacturing process

provides repeatable surface deviations due to stable conditions of gear manufacturing and

heat treatment and allow the deviations to be minimized by appropriate corrections to the

machine-tool settings.

The proposed approaches cover the solutions to the above-mentioned problems and are illus-

trated by numerical examples for hypoid pinion and gear tooth surfaces.



Thecontentsof thereport is dividedinto two parts:

I. General Theory

In part I, the successful application of coordinate measurements needs the following proce-

dures :

(i) Analytical or numerical representation in the 3D space of the theoretical surface and the

equidistant surface where the center of the probe is located in the process of measure-

ment s.

(ii) Determination of the grid where the center of the probe must be located.

(iii) A certain point on the theoretical surface must be chosen as the reference point.

(iv) Determination of deviations of the real tooth surface from the theoretical one that are

measured along the common normal to both surfaces.

(v) Minimization of deviations of the real surface by correction of previously applied machine-

tool settings.

II. Application to Coordinate Measurements of Hypoid Pinions and Gears.
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Part I

GENERAL THEORY



CHAPTER 2

REPRESENTATION OF A THEORETICAL SURFACES

Henceforth, we will consider four surfaces: (i) S-the theoretical tooth surface, (ii) _(e)-the surface

that is equidistant to _ and might be traced out by the probe center if the deviations are equal to

zero, (iii) _'-the real tooth surface, and (iv) _ ,-the(_ surface that is traced out by the probe center

when the real surface is measured. The subscript for symbols E, _(_),E* and Z* (for instance(c)

_(_)m) indicates in which coordinate system (S,,_ for designation _(¢)m) the surface is represented.

We consider that a theoretical surface _t is represented analytically in a coordinate system St

that is rigidly connected to Zt. Two types of representation arise:

(i) in two-parametric form by a vector function

rt(u, _) (2.1)

and (ii) in three-parametric form with related parameters.

rt(u,0,¢) (2.2)

8,¢) = 0 (2.3)



Equations (2.2) and (2.3) represent Zt as the envelope to the family of tool surfaces, Z¢, that

is generated in coordinate system St by the tool surface in its relative motion with respect to the

being-generated gear. Parameters (u, 8) in expressions (2.2) and (2.3) are the Gaussian coordinates

(surface coordinates) of the tool; ¢ is the generalized parameter of motion. Equation (2.3) is the

equation of meshing (Litvin, 1989) [3]. In the case where the tool surface is a ruled developable

surface, for example a cylindrical involute surface, a screw involute surface, or a cone, the equation

of meshing is linear in one of the surface parameters and it is easy to represent the generated surface

directly in a two-parametric form.

Henceforth, we will consider that the theoretical surface is represented in two-parametric form

as follows.

0rt 0rt
rf(u,8;dj)eC 2 (j = 1,...,m); u, OeE; _u x _ ¢ 0 (2.4)

The designation C 2 means that the vector function has continuous derivatives for all arguments

at least to the second order. The Gaussian coordinates are designated by u and 8, and E is the

area of u and 8. The inequality in (2.4) indicates that Et is a regular surface. The designation

dj (j = 1,..., rn) indicates constant parameters-the so-called machine-tool settings.

To illustrate dj we consider the case of generation of a formate cut hypoid gear (Fig. 2.1). The

generating surface is a cone with Gaussian coordinates u and _ (Fig. 2.2). The installation of

the cone with respect to the cradle is determined with two parameters, H2 and ]/2 (Fig. 2.3). The

installation of the gear in the plane y_. = 0 is determined with the parameters/kXm and 7,_. Here:

/kXm represents the location of the crossing point, Or, with respect to the machine center, Oc;

7
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Gear

Figure 2.1: Hypoid Gear Drives



Figure2.2: Generating Cones



Figure2.3: Machine-ToolSettingsFor FormateCut Gear
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and7mdeterminesthe orientationof gearaxis zt in the process of generation. These parameters,

H2, V2,/_X,n and 7,_, are the machine-tool settings, dj. It is assumed that the parameters dj can

be varied to minimize the deviations of the reM tooth surface to the theoretical one.

In addition to expression (2.4) we will also need a parametric representation of a surface E(_.)t

that is equidistant to the theoretical surface Et. Such a surface is represented by:

r,(u, 0) + _.,(u, 0) (_ ¢ 0) (2.5)

Here:

n,(,_,O)=
Nt 0rt Ort

IN, l; Nt -- _ × _-_ # 0 (2.6)

where Nt is the vector of surface normal; nt is the unit normal; and X is a scalar that determine

the distance between the two surfaces that is measured along the normal.

Examples of derivation of surfaces of spiral bevel gears have been represented in the works: F.L.

Litvin [3] F.L. Litvin and Y. Zhang [4], and R.F Handschuh and F.L. Litvin [5].

I1



CHAPTER 3

PRINCIPLE OF COORDINATE MEASUREMENT

The machine for coordinate measurements (CMM) usually has four or more degrees of freedom. For

instance, the Zeiss machine used by the Gleason Works has four degrees of freedom, one rotational

and three translational motions [1]. The three computer controlled translational motions of the

probe are performed in three mutually-perpendicular directions during the process of measurements.

The probe tip is a changeable ball whose diameter can be chosen from a wide range, according to

the specifications of the surfaces to be measured. In the Zeiss machine, the rotational motion is

performed by a rotary table whose axis coincides with the axis of the workpiece and can be rotated

together with the workpiece being measured.

Henceforth, we will consider that a coordinate system Sm(Xm,y,_,Z,-,) is rigidly connected to the

computer controlled 3-dimensional coordinate measuring machine (CMM) and z,_ coincides with

the axis of the gear and pinion (Fig. 3.1). The axis of the probe may be installed parallel to Zrn

(Fig. 3.1.a) or perpendicular to zm (Fig. 3.1.b), depending on the design of the workpiece and the

surface (for instance, depending on the pitch cone angle of the gear or the pinion). The back face

of the workpiece, which is perpendicular to its axis and is finished to high precision, is installed

flush with the base plane of the CMM. The origin of the coordinate system S,_ can be located in

the base plane or is related with it.

A Coordinate system St(zt,yt,zt) is rigidly connected to the being measured gear. In some

12
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Figure 3.1: Surface Measurement of a Gear and Pinion
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caseswemay assumethat theorigin Ot coincide with Ore. Thus, the two coordinate systems Sm

and St can be brought into alignment only by the rotation of the rotary table. In the most general

case, the orientation and location of St respect to S,,_ are determined with two parameters 6 and l

(Fig. 3.2). We will consider that parameter l is known from the installments and parameter 6 is

determined by using the procedure of computation described below (in chapter 4).

In order to align the coordinate system of tooth surface St with the CMM coordinate system Sin,

a reference point, say (x_), (0) (0),ym , zm ) on the theoretical tooth surface, say E,n , must be specified.

The coordinates (X(m°), ]_(n°), -(0)_z;,_ j of the probe center, which correspond to (x_), y!O), z(m0)) can be

determined knowing the radius of the probe and the normal to the surface by using equation (2.5).

For the initial installment of the tooth surface, the probe center is placed at (X (°), y(0), Z_)), and

the tooth surface is brought into contact with the probe by turning the rotary table. Therefore,

the tooth surface is fixed in the process of measurements and the probe performs measurements by

translational motion. The displacement of the probe center in the x,_, ym and z,n axis directions

represent its displacements from the initial position.

The measurement data provide the coordinates, (X*,Y _, Z _) of the probe center, which traces

out in reality an equidistant surface, say Z* to the real tooth surface, say E*, in the process of(c),

measurement.

Knowing the initial and current positions of the probe center, we can determine the surface

deviations based on the change of position of the center of the probe in the process of measurements.

CMM Calibration:

Calibration of the CMM for a chosen probe ball can be accomplished using a calibration ring

(Fig. 3.3). The initial coordinates of the center of the ball are:

x(°) v.(°) = [R+ a,0,/] (3.1)

14
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C_librationRin=_

Figure 3.3: Calibration of CMM for Measurements Using a Calibration Ring
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HereR is the radius of the calibration ring and a is the radius of the ball. At the initial position,

the probe ball is in contact with the calibration ring. The Ym = 0 alignment can be achieved if the

same displacement /k_m of the probe corresponds to +/ky,_ displacements. The value of f can be

obtained by independent measurement.

17



CHAPTER 4

THE GRID AND REFERENCE POINT

4.1 The Grid

The grid (Fig. 4.1) is a set of points on the theoretical surface St that are chosen as points of

contact between the tooth surface and the probe [6]. Figure 4.2 shows the grid on the surface of a

spiral bevel gear.

(1). In accordance to the practice of measurements a set of 45 points is usually chosen for the

measurements that are located in nine longitudinal cross-sections of the gear and pinion surface

with five points in each cross-section (Fig. 4.2).

(2). Consider that the theoretical surface St is represented in two-parametric form by the vector

function rt(u, 0). Then the Gaussian coordinates for the grid points can be determined based on

the following considerations.

2 It 2
(4.1)

Here: ci is the constant that determines the location of the chosen cross-section; Pij determines the

shortest distance of the chosen point of the surface from the axis of the gear.

18
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Figure 4.2: Surface Grid on a Spiral Bevel Gear
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Figure 4.3: Definition of Points on the Measurement Grids
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We candeterminethe Cartesiancoordinatesand curvilinearcoordinates(u,0) for n = i × j

points of measurements.

(3). The theoretical coordinates of the probe center for each grid point is determined by

considering that the probe center will lie on a surface E,: that is equidistant from Zt. The following

vector equation determines these coordinates in system St.

pt = rt(u,_) + an,(u,_) (4.2)

where a is the radius of the ball surface of the probe. Equations (4.2) represent in St the surface

that might be traced out by the center of the probe if the surface deviations are equal to zero.

4.2 Reference Point

One of the grid points (usually the center one, i.e., mean point) is chosen as the reference point

(Fig. 4.3). This point is used to install the gear on the CMM and to obtain the value of 6 that is

needed to represent the coordinates of the grid points in S,_. The CMM is provided with a rotary

table that allows the gear to be rotated to an initial position with respect to the probe.

We consider that the gear is installed with its back-face flush against the base plane of the

CMM such that the Om coincides with the Ot and the parameter l = 0 is known (Fig. 3.2). The

rotational alignment of the gear and the value of 6 can be obtained based on following two steps.

Step (1): the probe is brought into contact with the point on the real surface that is closest to the

chosen reference point.

Step (li): the parameter 6 is determined based on coordinate measurements at this point.

We assume that the real surface deviations from the theoretical one and that we would like the

22



probeto contactwith the realsurfaceat the point closestto thechosenreferencepoint. Assuming

that the variationin surfacenormalwill be small, the measuredcoordinates_y(0) v(0) Z(0)_ of
I-eLl'D, _ _ tr¢ _ Tn ,/

the probe center can represented by using the following matrix equation (Fig. 3.2).

R!°) = [Mm,]vl°/ (4.3)

Then we obtain

[M,n_] =

cos5 sin5 0 0

-sin5 cos5 0 0

0 0 1 0

0 0 0 1

(4.4)

X_ ) - (X_ °) + bn_t)cos5 + ()_(0) ÷ bnyt)sin6 (4.5)

_) = -(x_ °)+ bn_,)sin5+ (_,(o)+ b_,)cos_ (4.6)

Z_) = Z[ °) + bn.t (4.7)

, (0) rx(O ) y(0),Z(0)]T_Here: tPt =[ t , t t j j are coordinates of the point equidistant from the chosen reference

point as given by (4.2); (nxt, nyt, nzt) are the components of the theoretical surface normal in St at

the chosen reference point; 6 is the parameter of orientation; and b is the normal-direction deviation

of the real surface from the theoretical surface at the chosen reference point.

23



Together,equations(4.5-4.7)representasystemof 3 equations in 5 unknowns, X_ ), y(0), Z(o), 5

and b, that can not be solved uniquely. To obtain a solution we assume that at reference point

b = 0, and for convenience we choose y(0)= 0. Then equation (4.7) can be solved for Z_ ) = Z_ °)

and from equations (4.5) and (4.6) we can derive the following relation for X_ ) that does not

depend on/f.

x_) = v/(x_°)):+ (_,(°)): (4.s)

After solving (4.8) for X_ (°), 5 can be determined from the following relation that can be derived

fromequations(4.5) and (4.6)consideringthat y(0) = b= 0.

(x_°)): + (v,(°))_- z}O)x(o)
tan _ = ]_(0)X_) (4.9)

Based on the above considerations, rotational alignment of the gear can be obtained as follows:

(y(0) v,(0) _(0)_ that have been determined as described(i) install the probe with coordinates v',_ ,-,_ ,--,m j

above;

(ii) turn the rotary table until the probe contact the to-be measured surface. The value of (5 for

this installation is given by equation (4.9).

24



Process of Measurements

With the parameters _ and l determined, matrix equation that is similar to (4.3) can be used to

find the S,_-system coordinates , X,-,, _, Z,-,,, of the theoretical probe center for each grid point.

In the process of measurement, the probe center is controlled by the CMM to keep two measured

coordinates, say (X,_, ]_) as close to the coordinates (Xm, Ym) of the chosen grid point as possible.

The third measured coordinate Z_ will differ from Zm if the real tooth surface deviates from

theoretical one.
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CHAPTER 5

DETERMINATION OF REAL MACHINE-TOOL SETTINGS

5.1 Initial Considerations

The determination of real machine-tool settings is for the case when surface deviations are caused

only by errors in the installment of machine-tool settings. It is especially important for the gener-

ation of a master gear-a gear that is used as a model for the evaluation of manufactured gears. In

this section we use the deviations determined by coordinate measurements to determine the real

machine-tool settings and then to correct the installment of machine-tool settings.

In addition to the real machine-tool settings, we consider the parameters _ and l (Fig. 3.2) as

unknowns.

The imaginary surface E(,;) that is equidistant to the theoretical surface Z is represented in St

by (see equations 4.2):

Xt = zt(u,O;dj) + an_.t(u,O;dj) = A(u,O;dj) ]

JYt = yt(u, O; dj) + anyt(u, 19;dj) = B(u, O; dj)

Zt = zt(u,O;dj) + anzt(u,O;dj) = C(u,O;dj)

(5.1)
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Here: a is the radius of the probe sphere; A, B and C represent the resulting functions; and

dj (j = 1,...,rn) are the to-be-determined real machine-tool settings that have been applied in

the process of generation.

Basic Equations

The determination of the real machine-tool settings is based on the following procedure.

Step 1. The coordinate transformation from St to S,, which is rigidly connected to the coordinate

measuring machine is based on the matrix equation:

rC_m= [M,_]rCo)t (5.2)

where [Mm,] is represented by equation (4.4).

Considering that the measured coordinates of the probe center (XT_,Y,*_, Z,*,,) coincide with

coordinates (X,_,, Y,_, Z,,) on the theoretical equidistant surface _(_.)m represented in S,, we have

[xm _, Zm]r= [X:_ YT_ Z;_]r (5.3)

Equations (5.1), (5.2) and (5.3) yield
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X,_ = A(u, O; dj) cos 6 + B(u, O;dj) sin 6 ]

Y,; -a(u,O;di)sin6 + B(u,O;dj)cos6

Z_ = C(u,O; dj) + l

(5.4)

Step 2. Our goal is to derive equations that are invariant with respect to the parameters _ and I.

Equation (5.4) yield

X_, 2, + Y,_f = A2(u, O;dj) + B2(u, 0; dj) (5.5)

A(A - X,_) + B(B - ]_) (5.6)tan- =
2 BX_, - AY,4

I: is also evident that

l = z;. - c(,,, _;d_) (5.7)

Step 3. Henceforth we will drop the subscript rn indicating that the coordinates of a point are

represented in coordinate system S,_. We will designate with g the number of measurement points

and with subscript p the index of a measured point. Based on equations (5.5), (5.6) and (5.7), we

obtain the following system of equations that is used for determination of the real machine-tool
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settings.

X;2 + y_2 -_ A2(up, Op;dj) + B2(ur_,Ov;dj) (p= 1,...,g) (5.8)

Av( Ap - X_ ) + Bv( Bp - t_" )

BpX_ - Aptp"

(l _<p _< g -1)

Ap+l(Ap+l- X7+1)+ Bp+l(Bp+_- _;'_)
Bp+lX_+ 1 - Ap+l't_'+l

z;+_- z; = c(,,_+_,o_+1;d_)- C(u,, o.;dj) (1 _<p _<g - 1)

(5.9)

(5.10)

Using the results of measurements for g points on the surface we obtain (3g - 2) equations (5.8),

(5.9) and (5.10) in: (i) 2g unknown surface coordinates (uv,Op); and (ii) rn unknown machine-tool

settings dj (j = 1,..., rn). Thus, to determine rn unknown machine-tool settings we need:

g=m+2; k=3g-2=3rn+4 (5.11)

where g is the number of surface measurements and k is the number of nonlinear equations that

have to be solved. Parameters (5 and l of orientation and location of coordinate system St with

respect to Sm (Fig. 3.2). can be determined from equations (5.6) and (5.7).

In the case when the gear and the pinion are installed flush against the base plane of the CMM

we can take I = 0 (the origin Ot coincides with Ore), and use the equation:
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z; = c(,,., dj) (5.12)

in place of equation (5.!0). For this case, the coordinate measurements of g points on the real

surface, results in (3g - 1) equation (5.8), (5.9) and (5.12), in 2g unknown surface coordinates

(up,0r,), and rn unknown machine-tool settings dj (j = 1,...,m). To determine the rn unknown

machine-tool settings we need

g=rn+l k=3g-l=3m+2 (5.13)

5.2 Computational Procedure

The numerical solution of a large system of nonlinear equations is a complicated problem. For the

case where l _ 0 and rn = 4, the number of equations to be solved is k = 16. The system of

nonlinear equations can be solved using computer software such as the IMSL subroutine DNEQNF

[7]. However, the successful application of this program requires a good first guess- an initial set of

unknowns that is used for the first iteration. We propose a solution procedure that begins with a

system of four equations using the measurements for only two points on the surface. The number

of equations, k = 4, and the number of measurements, g = 2, can be obtained from equation (5.11)

considering that m = 0. This means that for the first step, errors in the machine-tool settings are

neglected - the machine-tool variables dl, d_,..., dm in equation (5.8), (5.9) and (5.10) are set to
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thenominal values d_°),d_°),..., a_°).

'Step 1. An initial guess for the system of 4 equations is obtained as follows: (i) an approximate

value for l is determined by measurements, then (ii) neglecting the errors of machine-tool settings,

approximate values for the surface coordinates of two measured points are determined using the

following equations.

C(up,Op)= Z_,- l (p = 1,2)

A2(up,0p)+ B2(-p,6)= X; 2+ r; 2 (p = 1, 2)

(5.14)

(5.15)

Step 2. Knowing the approximate values of (u,0) for the two points of measurement, we then

obtain more precise solutions for surface coordinates using th system of four equations:

A2(ul,01) + B2(u1,01) = "'1v'2 + y¢2

A2(u2, 02) + B2(u2, Oz) v.2=--2 +Y2 *_

C2('tt2,02) -- CI(Itl,O1) = Z_ - Z{

AI(A1 - X{) + BI(B1 - Y{)

B1Xf - A1YI"

A2(A2 - X;) + B2(B2 - Y_)
=

B2X_ - A2YZ

(5.16)

(5.17)

(5.18)

(5.19)

obtained from equation (5.8), (5.9) and (5.10) considering that g = 2, and neglecting errors in the

machine-tool settings.
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Step 3. The solution obtained for the previous step is then used as the initial guess for a larger

system of k = 7 equations (5.8), (5.9) and (5.10), obtained by considering that one machine-tool

setting is a variable, and using g = 3 measurement points.

Step 4. Gradually the number of machine-tool settings that are considered as variables are in-

creased until eventually the exact values for the whole set of j = 1,..., m unknowns machine-tool

settings are determined using a system of k = 3m + 4 equations (5.8), (5.9) and (5.10). Knowing

the real values of the machine-tool settings we may correct the settings and eliminate the deviations

of the real surface from the theoretical one.

We can expect that in some cases the real tooth surface will be substantially distorted due to

errors other than errors in the applied machine-tool settings. For these cases, we use the procedure

described in chapter 6 and 7 to improve the precision of the generated surface.
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CHAPTER 6

DETERMINATION OF DEVIATIONS OF REAL TOOTH SURFACE

Let us consider in coordinate system Sm two surfaces: (i) Z(c),_ that might be traced out in Sm by

the center of the probe if the gear tooth surface is an ideal surface, and (ii) surface ]_(c)m that is

traced out by the center of the probe in the case when the gear tooth surface is the real surfaces

(Fig. 6.1).

The position vector of the probe center for the theoretical equidistant surface Z(_)m is deter-

mined in Sm with the equation similar to (4.2), i.e.,

(o) (o) m) (6.1)Prop = rmv(up, Op, dj ) + an,_p(up, Op,dj ) (p = 1,...,45 ; j = 1,...,

where, subscript p is the index of a measured point.

By measurements of the real surface the position vector of the probe center may be represented

as

Rmp=rmp(up, Op, d_°))+ Apnmp(Up, Op, d_°)) (p= 1,...,45 ; j= 1,...,m) (6.2)

where Ap determines the real location of the probe center on surface Z_c)rn and is considered along

the normal to the theoretical surface Era.

\
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Figure 6.1 Surface Notations
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Subscript "m" indicates that both surfaces are represented in Sin; rmp is the position vector

of the theoretical tooth surface Era; subscript "p" indicates that the current point of the grid is

considered; (u v and _p) are the theoretical surface Gaussian coordinates that are known for each

grid point; d_°) (j = 1,..., m) represent the initial theoretical machine-tool s.ettings; nmp is the

unit normal at the current grid point; R:n p = (X_p, Y,_p, Z_p) is obtained from the measurements.

Henceforth, we will assume that both surfaces have the same direction of the normal.

Equations (6.1) and (6.2) yield

a = (p_,, - r,.,,p)•n,_,_ (6.3)

Ap = (R_v - r_p) •nmp (6.4)

The deviation of the real tooth surface E,_ from the theoretical surface E,n is measured along

the normal to the theoretical surface and can be represented as

/',bp= x, - a : (R:_- P,np)•n,,_,_ (6.5)

Taking into account equations (6.4) and (6.5) we obtain that

Abp = Ap-a = (X_v-X,_p).n=mv+(Y_v-Y,_r,).ny,.np+(Z_v-Zmp).nz,_ p (p = 1,... ,45) (6.6)

where, the subscript p is the index of a measured point; (X_p,Y_p,Z_p) are the coordinates of

the center of the probe obtained by measurements; (Xmp(up, 8v), Ymv(up, OF), Z,,v(u P, 8p)) are the

"x.
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cartesiancoordinatesof the center of the probe for surface ]Ec.m that is equidistant to the theo-

retical surface Zm that are represented in Sin; nz,-ap(up,Op),nw_p(ur,,Op) and n_,_p(up, Op) are the

projections in Sm of the unit theoretical surface normal. Surface parameters (up, Or,) are considered

as known for each point of measurements.
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CHAPTER 7

MATHEMATICAL ASPECTS OF MINIMIZATION

Basic considerations

We consider two steps for computerized minimization of deviations of real tooth surfaces [9]:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations.

Step 1.: Variation of Tooth Surface Caused by Change of Machine-Tool Settings

The gear and the pinion tooth surface in accordance to expressions (2.4) are represented in S,_

as follows,

r,o = rm(u,O,dj) ;nm = _(,_,e, dj) (7.1)

In equations (7.1), the tooth surface is represented in terms of surface coordinates u and 0. For

simplicity, the subscript "m" is dropped in the following derivations. The first order variations

of the surface that is caused by the change of machine-tool settings and surface coordinates is

represented as
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Or _r
_r = -ff_O + _u_u + _ -_j_djOr

j=l

(r.2)

where, rn is the number of machine-tool settings.

We multiply both sides of equation (7.2) by the surface unit normal n and take into account that

Or Or Or ar

0---0" n = 0---u n = 0 since _ and _uu lie in the plane that is tangent to the surface. The surface

normal variations can be found as

'_ Or . n)gdj

j=l

(7.3)

Step 2.: Linear Equations

The surface normal variations must be equal to the deviations obtained by measurements. Thus

we will obtain an overdetermined system of n linear equations in rn unknowns ( m is equal to the

number of machine-tool settings) represented as

m

V'(°rp .,,_)_aj = _a_d_ = Abp (p= 1,...,,_) (7.4)
odj-- j=l

where, subscript p is the index of a measured point.

The number n of equations is equal to the number of points for measurements. In this report,

the number n is equal to 45 as mentioned in chapter 4
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We can now consider a system of n linear equations in rn unknowns (rn << n) of the following

structure

ailed1 ÷ a12_d2 ÷ ... q- alm_dm = /kbl "1

a21_dl q- a2_d2 4- ... q- a2,n_drn = Ab2 [
a,,l_dl q- a,_2_d2 ÷ ... q- anm_dm = Abn

(7.5)

Here:

/kbv = (R_p - Pray)" nmp (p = 1,...,n) (7.6)

where subscript p is the index of a measured point; apj (p z 1,... ,n;j = 1,... ,rn) represent the

0rp

dot product of partial derivatives _ and unit normal n r, (p = 1,...,n ; j = 1,...,rn).

The system (7.5) of linear equations is overdetermined since rn << n. The mathematical aspect of

the problem for the minimization of deviations is the determination of such unknowns _dj (j =

1,..., rn) that will minimize the difference between the left and right sides of equations (7.5). One

of the widely used methods for the solution of the overdetermined system of linear equations is the

least-square method. In this work we have used a commercially available subroutine DLSQRR of

IMSL MATH/LIBRARY [7] for computerization of the procedure.
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CHAPTER 8

Minimization Of Deviations of Face-Milled Hypoid Formate Gear

¢

8.1 Equations of Theoretical Tooth Surface _2

The head-cutter is provided with inner and outer straight-lined blades as it is shown in Fig. 8.1.

The blades that are rotated about the axis of the head-cutter generate two cones. Each tooth side

of formate face-bobbed gear is generated by a cone and the gear tooth surface is the surface of

the generating cone. The angular velocity of rotation of blades is not related with the process of

surface generation but depends only on the desired velocity of cutting. Usually, the formate gear

of a hypoid drive is cut by the duplex method [8,9]. This means that both sides of the gear space

are generated simul_ aneously by a head cutter and the machine tool settings are the same for both

sides.

Both generating cones (Fig. 8.2) can be represented by the same equation given as

I -8 G cos (_G 1
rc = (rG - 8Gsin_G)sinOG (8.1)

(rG -- 8G sinaG)COSOG

Here: rc is the position vector; rG = r(_ ) is the cutter tip radius; sC = 8{_), aG = a{_), (i=1,2); 8(_)

and a(_ ) are negative for concave side , and positive for convex side (i = 1, 2 for concave and convex
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Generating Cones

M

Cutter Blade

Figure 8.1: Head Cutter for Tooth Surface Generation
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YC

Figure 8.2: Generating Cone Coordinate System
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side, respectively). Parameters sa and _a represent the Gaussian coordinates of the generating

surface. The Unit normal to the generating surface is represented by the equations

Ore Or.. . N_ f sin a_

Nc = 0_---_× 0e---_' no = INc i = [ - cos_ sineGcos aG cos 0G

(8.2)

Fig. 8.3 shows the installment of the head-cutter (generating cone) and the gear on the cutting

machine. Coordinate systems So, Sc and $2 are rigidly connected to the cutting machine, the head-

cutter and the being generated gear, respectively. In the process of generation, all three coordinate

systems do not perform relative motions with respect to each other since the gear is formate cut.

Thus we may consider that they are rigidly connected each to other. The generated gear tooth

surface is the same as the surface of the generating cone for this type of gear. The installment

of the head cutter is determined with machine-settings H2 and _,_ that represent the location of

origin O_ of coordinate system S_. in So. The installment of the gear on the cutting machine is

represented by settings 7_ ) and AX,_. The origin 02 of coordinate system $2 coincides with

the point of intersection of the shortest distance of the hypoid gear drive with the gear axis (i.e.,

crossing point). Parameter AXT_, represents the location of 02 with respect to O0 -the origin of So.

Parameter "_) represents the orientation of gear axis in plane y_, = 0. The set of parameters t/2,

V2, AX,_, and 3(_ ) represents the set of the to-be corrected settings for minimization of deviations

of real gear tooth surfaces. The theoretical gear tooth surface Z2 and the surface unit normal are

represented in $2 by using the following matrix equations

(8.3)
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Figure 8.3: Installment of the Head Cutter with respect to Machine and Workpiece.

(For Formate Manufacture There Is No Rotation About Cradle Axis zo or Workpiece Axis z2)

45



[M2o] =

cos_,!_!o - sin_) o
0 1 0 0

sin7_ ) 0 cos7_ ) -AXm

0 0 0 1

(8.4)

[Mo_] =

1 0 0 0

0 1 0 -V2

0 0 I H2

0 0 0 1

(8.5)

n;(oc) = [z_0]b_]: [Z_o][Zo4-_(_c) (8.6)

[L_o] = COSo;_)ol -Sino_!_)1
sinT_ ) 0 eos7_ )

(8.7)

1 0 0 1
[Lo4 : 0 1 0 (8.8)

0 0 1

Equations from (8.1) to (8.8) enable the determination of the theoretical gear tooth surface _2

and its unit normal as (2.4),

_('_c, Oc;dj _ C2 (j : 1,...,4) ;_c,oc _E ; n_(oG,'r_)) # o (8.9)
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Heredj are the machine-tool settings _X,_, H2, _ and 7!,,2}. The Gaussian surface coordinates

are designated by sa and 9G.

We will also need the parametric representation of a surface E(_)2 that is equidistant to the

theoretical surface Z2. Such a surface is represented as (4.2),

P2 = r2(sG,OG) + an2(0a) (8.10)

where a is the radius of the ball surface of the probe.

8.2 Determination and Minimization of Deviations

After the theoretical tooth surface Z2 of hypoid gear are obtained, the deviations of the real

surface from the theoretical one and minimized the deviations by corrections of the previous applied

machine-tool settings can be determined in chapter 6 and 7. Both sides of a formate cut gear tooth

are generated simultaneously (by duplex method), and the machine-tool settings are the same for

both sides. Therefore the minimization of deviations for both side surfaces of the tooth must be

obtained by the appropriate change of the same machine-tool settings.

Computational Procedure

The computational procedure is similar to that we discussed in Part I as follows:

Step 1. Create grid points on the to-be measured surface that are chosen as points of contact

between the tooth surface and the probe (in chapter 4).

Step 2. Determine the reference point in coordinate system Sm (in chapter 4).

Step 3. Determine the deviations of real tooth surface from equation (6.6).
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Step 4. Minimize the deviations from equation (7.4).

8.3 Results of Coordinate Measurements and Minimization of Deviations

for Hypoid Gears

The numerical example is based on the experiment that has been performed at the Dana

Corporation (Fort Wayne, USA). The deviations of real gear tooth surfaces for both sides of the

gear tooth have been obtained by measurements on the Zeiss machine. The developed approach

has been used for minimization of obtained deviations. The number of measured points is p = 90

of both sides of the tooth (p = 1,...,45 for convex side ; p = 46,... ,90 for concave side). Fig. 8.4

and Fig. 8.5 illustrate the deviations Abp of the real surface from the theoretical one for the driving

side and coast side, respectively. The input data, original machine-tools settings, the corrections of

machine-tool settings and the corrected machine-tool settings are shown in Table A.1 in Appendix.

The experimental data include the coordinates of theoretical surface, the projections of surface unit

normal, and coordinates of the real surface (obtained by measurements) are represented in Table

A.2-A.7 in Appendix. Based on the corrected machine-tool settings, we can create a new surface

which will optimally fit the theoretical surface after the surface is distorted by heat-treatment during

manufacture. The minimized deviations between the new surface and the theoretical surface are

shown in Fig. 8.6.
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CHAPTER 9

Minimization Of Deviations of Face-Milled Hypoid Pinion

9.1 Generation of Pinion Theoretical Tooth Surface _1

The pinion tooth surface is generated as the envelope to the family of tool cone surfaces. The

derivation of the generated pinion tooth surface is based on ideas that have been represented in

reference [3,10].

Coordinate S_rstems

Henceforth, we will consider the following coordinate systems: (i) the fixed ones, S0, (x0,, Yo', Zo,)

and Sq(zq, yq, zq) that are rigidly connected to the cutting machine (Fig. 9.1 and Fig. 9.2), and

(ii) the movable coordinate systems So, and 81 that are rigidly connected to the cradle of cutting

machine and the pinion, respectively. The origin, O1, of coordinate system $1 coincides with the

point of intersection of the shortest distance of the hypoid gear drive with the pinion axis (i.e.,

crossing point). In the process of generation the cradle with So, performs rotational motion about

the zo,-ams with angular velocity w(c) and the pinion with $1 performs rotational motion about

the _q-axis with angular velocity w (p) (Fig. 9.2).

The tool (the head-cutter) is mounted on the cradle and performs rotational motion with the

cradle. Coordinate system St is rigidly connected to the cradle. To describe the installment of the

tool with respect to the cradle we use coordinate system Sb (Fig. 9.1 and Fig. 9.3).
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The required orientation of the head-cutter with respect to the cradle [4] is accomplished as

follows:

(i) coordinate systems Sb and St are rigidly connected and then they are turned as one rigid

body about the z¢,-axis through the swivel angle j (Fig. 9.1);

(ii) then the head-cutter with coordinate system St is tilted about the yb-axis under the angle i

(Fig. 9.3.b)). The head-cutter is rotated about its axis zt but the angular velocity in this

motion is not related with the generation process and depends only on the desired velocity

of cutting.

It will be shown below that the deviations of real pinion tooth surface can be minimized by

corrections of parameters of installment of the pinion and the head-cutter. These pinion setting

parameters are Ern- the machine offset, 7_ )- the machine-root angle, /XB- the sliding base, /kA-

the machine center to back (Fig. 9.2). The head-cutter settings parameters are: Sn- radial setting,

0¢- initial value of cradle angle, j- the swivel angle (Fig. 9.1), and i- the tilt angle (Fig. 9.3.b).

9.2 Equations of Theoretical Tooth Surface

Tool Surface Equations:

The head-cutter surface is a cone and is represented in St (Fig. 9.3) as

r (sF, OF)=

(rF -f- SF sin OfF) COS 0F

(r E q- SF sin OtF) sin Of

--,_F cos ot F

1

(9.1)

Here: (SF,OF) are the Gaussian surface coordinates, aF is the blade angle and r F is the cutter
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point radius. Vector function (9.1)with Ot F positive and aF negative represents surfaces of two

head-cutter that are used to 'cut the pinion concave side and convex side, respectively (Fig. 9.4).

The unit normal to the head-cutter surface is represented in S_ by the equations

- cos aF cos0F 1
nt = - COSO_F sin OF (9.2)

- sin a F

Family of Tool Surfaces

The cradle with the mounted head-cutter and the pinion perform rotational motions about the

axes-zo, and zq, respectively. The angles of cradle and pinion rotation, q and ¢1 are related by the

equation

q = 0c + rn_.v¢l (9.3)

w(_)

Here: 0_ is the initial value of cradle angle and rn_v - w(P)
- -- is the gear cutting ratio.

The family of tool surfaces is generated in $1 and this family is represented by the matrix

equation

rl(sF, OF, ¢1) = [Mlq( ¢l )][Mq,][M,o,][Mo,_,][Mc,b][Mbt]rt( sF, OF) (9.4)

Coordinate system Sn is an auxihary fixed coordinate system whose axes are parallel to axes of

So, (Fig. 9.2). Matrices in equation (9.4) are represented as follows
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Figure 9.4: Head-Cutter Showing Point Radii and Blade Angles
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[Mb_]=

cosi 0 sini 0

0 1 0 0

-sin/ 0 cos/ 0

0 0 0 1

(9.5)

[M_,b]=

-sinj -cosj 0 S/_

cosj - sinj 0 0

0 0 1 0

0 0 0 1

(9.6)

[Mo,_,]=

cosq sinq 0 0

-sinq cos q 0 0
0 0 1 0

0 0 0 1

(9.7)

[Mno,]=

1 0 0 0

0 1 0 Em
0 0 1 -/kB

0 0 0 1

(9.8)

[Mq.] =

cos 7_") 0 sin 7,__') -/kA

0 1 0 0

-sinT_) 0 cosT_) 0

0 0 0 1

(9.9)
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[M q] =

1 0 0 0

0 cos ¢1 sin ¢1 0

0 -sin¢l cos ¢1 0
0 0 0 1

(9.10)

Matrix equation (9.4) and tool surface equation (9.1) represent in S_ the family of tool surfaces

in the form

rl = r,(sF, eF, ¢1) (9.11)

Equation of Meshing

The pinion tooth surface generated in $1 is the envelope to the family of tool surfaces. To

determine such an envelope we have to derive the equation of meshing [3] by using the equation

n (p) • v (c'p) =- N (p) •v {cp) -- f(sF, #F, _)1 ) = 0 (9.12)

where n (p) and N (v) are the unit normal and the normal to the tool surface, and v (¢p) is the velocity

in relative motion.

Equation (9.12) is invariant with respect to the coordinate system where the vectors of the

scalar product are represented. Representing those vectors in So,, we can derive the equation of

meshing using the following procedure

Step 1.: Vector no, can be represented as
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no, = [Lo,c,][Lc,b][Lbt]nt (9.13)

where [L] is the 3 × 3 submatrix of [M]. The superscript in n_,v) is dropped for simplification of

designations.

Step 2.: The sliding velocity v(_'P)o,(see [3]) is represented by (Fig. 9.2):

v(_) .,(_) .,(p)) w(v))o, = [( - × ro,]+ (Oo,A× (9.14)

Here:

ro, = [Mo,c,J[Mc,b][Mbt]rt (9.15)

OtoA = [0 - E,_ AB] T (9.16)

_.,(P)=-[cosT_) 0 sinT_)]T ; (]_,,(P)t=I) (9.17)

_o(_) = -[0 0 m_]

Equations (9.12), (9.13) and (9.14) yield the equation of meshing in form

(9.18)

f(sF, Or, Cx) = 0 (9.19)
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Pinion Tooth Surface Equations

The pinion tooth surface equations are represented in three-parametric form by the equations

r1( 1,0r, ¢1) : [Ml,3r,(,r, Or) f(sF, 0F, 41 ) = 0 (9.20)

However, since equations (9.20) are linear with respect to the Gaussian coordinate ,SF we can

eliminate SF and represent the pinion tooth surface in two-parametric form as

rl(Sr,Ci,dj)eC 2 (0F,¢l)eE (9.21)

Here: dj (j = 1 .... ,8) designate the installment parameters; Em,7_ ), AB, AA, SR,O_.,j and i ;

C 2 designates that the vector function has derivatives on arguments t_F and 41 at least of the first

and second order.

The normal to the pinion tooth surface is represented as

z

J
i

f

(9.22)
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where dk (k = 1,2,3, 4) designate the installment parameters 7(_1,), 0c, j and i.

9.3 The Grid

We recall that the grid (Fig. 4.1) is a set of points on the theoretical surface Z that are chosen as

points of contact between the tooth surface and the probe.

The development of the grid is based on the following considerations (see chapter 4):

(1). In accordance to the practice of measurements a set of 45 points is usually chosen for the

measurements that are located in nine longitudinal sections of the pinion surface with five points

in each section (Fig. 4.3).

(2). Mean point M (Fig. 4.3 and Fig. 9.5) of the theoretical surface Z is usually chosen as the

reference point, that is necessary for the initial installment of the probe on the coordinate mea-

surement machine. Obviously, the real tooth surface E_ does not pass through M and the surface

normal at M intersects the real surface at M r. We can consider that an imaginary theoretical

surface Z(c ) that is equidistant to E passes through M _ and the deviations of the real surface are

determined with respect to Z(¢).

As shown in Fig. 9.5 the position of the mean point M can be represented in $1 by X£ and

RL, which are determined by the following equations

hm}XL --- A cosF1 + (bG - --)sinF1

(9.23)
RL A sinF1 - (bv - -_-) cosF1

Here, A is the mean cone distance; F1 is the pinion pitch angle; bc is the mean dedendum and hm

is the mean whole depth; XL and RL are measured along the pinion axis and perpendicular to

this axis, respectively.
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Combiningequation(9.23)with surfaceequation(9.21),wemayobtaintwononlinearequations

in termsof (¢_o),0(FO)),

r'_(°) a(°)_ = X L + Z1 ]TII, w1 ,t' F )

f.21_(o) ,_(o)_ ,21_(o) _(o)_ RL 2
YI_,WI _VF ] "_ _'l\Wl ,VF } =

(9.24)

Here, Zp is the pitch cone apex beyond the crossing point O1.

Solving equation system (9.24), we may determine surface coordinates (¢_°),0(F°)) for the refer-

, (o) (o) z_O)ence point and also its Cartesian coordinate _i , Yl , )"

(3). After the reference point is located, the rest of grid points can be chosen with the consid-

eration that the grid points must be located uniformly on the working part of the tooth surface.

(4). Points on surface _(_)1 that is equidistant to theoretical surface _1 can be determined in

$1 with the vector equation

pl = r1(¢1,OF)+ an1(¢1,0r) (9.25)

where a is the radius of the ball surface of the probe. Equations (9.24) and (9.25) are represented

in the terms of the Gaussian surface coordinates. Equations (9.25) represent in $1 the surface that

might be traced out by the center of the probe if the surface deviations are equal to zero.

9.4 Determination of Reference Point in Coordinate System Sm

We recall that coordinate system Sm is rigidly connected to the coordinate measurement machine

and our purpose is to determine the initial installments of the pinion on the machine to provide

the contact of the probe with the pinion mean surface point.

We consider that the pinion is installed with its back-face flush against the base plane of the

CMM such that the origin of coordinate system S,_, Ore, coincides with 01 and thus parameter I
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is equalto zero(Fig. 9.6). Usually,themeasurementprocessisperformedin a coordinatesystem

S,_ where the ym coordinate of the mean point is zero.

According to drawings of Fig. 9.7, the coordinate transformation from $1 to Sm with 0 = 0 is

as follows,

[rm] = [M,,_l][r,] = [Mma,][M_,l][rl] (9.26)

= =

Then we obtain for the reference point

0 -sin6 -cos6 0

0 - cos 6 sin 6 0

-1 0 0 0

0 0 0 1

(9.27)

x,,_=-ylsin6-zlcos6 ]

Y,,_ = - Yl cos 6 + zl sin

Zrn = --Xl

(9.28)

We consider that in equations (9.28)coordinates :e_°),y_ °) and z_°) for the reference point are

known and the equation system must be solved for three unknowns. Taking y_) = 0, we may

represent the solution for the unknowns x_ ), z! °) and 6 as follows

(9.29)

tan - =
2

z(O)z(o)

1 rn

(9.3o)

z_) : _z_o) (9.31)
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After obtaining the angle of 5, the theoretical pinion tooth surface Z1 can be represented in Sm

by using equation (9.26). Similarly, the unit normal to the theoretical pinion tooth surface can be

represented in S,-, as

[nm] = [Lml][nl] (9.32)

where,

I 0 -sin5 -cos
[Lml] = 0 -cos6 sin_ (9.33)

-1 0 0

The coordinates of probe center p(_) rX(O) y(O) Z(O)]T=t m , m , m j on surface _(_),_ that correspond to

reference point (z_°),y_ °), z_°)) on theoretical surface Y_I can be determined in Sm with equation

similar to (9.25). For the initial installment the pinion tooth surface must be brought into contact

with the probe while the probe center is at (X(_),Y(°),Z(°)_,,_j. Then, the pinion tooth surface is

fixed in the rest of measurement process, while the probe performs the translational motions.

Based on the above considerations, the procedure of initial installment can be obtained as

fOllOWS:

(i) Install the probe with coordinates (X_), y(0)m, Z(m°)) that are represented as follows:

ym(0) = y_ ) + an (°,._) [Z(m°) = z(m°)+ an (°)

(9.34)

Here: .n,,,_-(°),n(0u_) and n(_ are the components of the theoretical surface normal at the reference

point; a is the radius of the ball surface of the probe.

(ii) Turn the rotary table until the probe contacts the to-be-measured surface. The value of _ for

this installation is given by equation (9.30).
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9.5 Determination of Devlations of Real Tooth Surface

We consider in coordinate system Sm two surfaces: (i) Z(_)m that might be traced out in Sm by

the center of the probe if the pinion tooth surface is an ideal surface, and (ii) surface Z*(¢)m that is

traced out in reality by the center of the probe in the case when the pinion tooth surface is a real

surface.

The position vector of the probe center for the theoretical equidistant surface E(_)m is deter-

mined in Sm with the equation similar to (9.25), i.e.,

Pmi = rmi(¢li, OFi, dj) + anmi(¢li, OFi, dk) (i = 1,... ,45) (9.35)

By measurements of the real surface the position vector of the probe center may be represented

as

ll_i = rmi(¢li,OFi,dj) + ;_inmi(¢li,OFi, dk) (i = 1,... ,45) (9.36)

where Ai determines the real location of the probe center on surface E(_) and is considered along

the normal to the theoretical surface.

Subscript "m" indicates that both surfaces are represented in Sin; subscript "i" indicates the

current point of the grid; (¢1i and OFi) are Gaussian coordinates of the theoretical tooth surface

that are known for each grid point; dj (j = 1,..., 8) represent the linear and angular machine tool

settings designated by Era, AB, AA, S_, 0_, j, i, 7m (Fig. 9.1, 9.2, 9.3); d_ (k = 1,..., 4) represent

the angular machine-tool settings designated by O_,j, i, 7m.

Equations (9.35) and (9.36) yield
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a = (P,-,,i - rmi) "nmi (9.37)

= (1%. - •",ni (9.38)

The deviation of the real tooth surface E* from the theoretical surface _ is measured along the

normal to the theoretical surface and can be represented as

Abi = A_ - a = (l_i - p,,_{) - nmi (9.39)

Taking into account equations (9.39) and (9.38) we obtain that

/kbi = Ai - a = (X;,,i - X.,i) " n_.mi + (Y_i - Y,',,i) " ny_i + ( Z_,i - Z,_i) " n.mi (9.40)

r4_ _ "kwhere (Xmi,Ymi, Zml ) are the coordinates of the center of the probe obtained by measurements;

(Xmi,Ymi, Z,_,i) are the coordinates of the center of the probe for surface E(e)m that is equidistant

to the theoretical surface Era.
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9.6 Mathematical Aspects of Minimization

We consider two steps for computerized minimization of deviations of real tooth surfaces:

(1). development of relations between corrections of machine-tool settings and surface deviations;

(2). minimization of deviations (see chapter 7).

Step 1.: Variation of Tooth Surface Caused by Change of Machine-Tool Settings

The pinion tooth surface in accordance to expressions (9.21) and (9.22) is represented in Sm as

follows

r_ = r,,_(¢x_,0F_,dj) ; nm - nm(¢l_,0F_,dk) (9.41)

For simplicity, the subscript "m" is dropped in the following derivations. The first order varia-

tions of the surface that is caused by the change of machine-tool settings and surface coordinates

is represented as

Or Or s Ori

Ar_= 00---;_0_+ b--_A_I+ Z _Aej (9.421
j=l

The normal deviation of the surface at grid point i can be represented by

/x, rni = Ari. (n_) (9.43)

n+An
where n_ =

Here: /_ni is the variation of surface unit normal ; [n_] = 1.

Since we consider the first order deviations, we can represent the deviations/_rni by
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Arnl = Arl •ni _=i"Odj Adj) . n_
(9.44)

_r

While deriving equation (9.44) we have taken into account that _ •

Or Or
vectors _ and -z7-, lie in the plane that is tangent to the surface.

o_F crcpl

GQr
n - • n = 0 because

0¢1

Step 2.: Linear Equations

The surface normal variations must be equal to the deviations obtained by measurements. Thus

we will obtain an overdetermined system of n linear equations in eight unknowns represented as

8 Ori
n, = Ab, (9.45)

j=l

The number of equations, n, is equal to the number of measurements (the number of grid

points). In this example, 8 machine-tool settings are considered. The mathematical aspect of the

problem is the determination of such eight unknowns of/',dj that will minimize the difference of

the right and left sides of equation system (9.45). One of the widely used methods for the solution

of the overdetermined system of linear equations is the least-square method. In this work we have

used the subroutine DLSQRR of IMSL MATH/LIBRARY [7] for the numerical solution.

9.3 Results of Coordinate Measurements and Minimization of Deviations

for hypoid pinions

The numerical example is based on the experiment that has been performed at the Dana

Corporation (Fort Wayne, USA). The deviations of real pinion tooth surfaces for both sides of the

pinion tooth have been obtained by measurements on the Zeiss machine. The developed approach

has been used for minimization of obtained deviations. Fig. 9.8 and Fig. 9.9 illustrate the deviations

/kbi of the real surface from the theoretical one, that have been obtained by measurements and

calculations for the concave side and convex side, respectively. Based on the corrected machine-
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tool settings, we can manufacture a new surface that will optimally fit the theoretical surface after

the surface is distorted by heat-treatment and manufacturing process, etc. The results of performed

experiment for minimized deviations between the new surface and the theoretical surface are very

favorable, that is illustrated with drawings in Fig. 9.10 and Fig. 9.11 for concave side and convex

side, respectively.

Experimental Data

The experimental data are represented in tables in Appendix (Table B.1-B.7 for concave side,

Table C.1-C.7 for convex side)

(1) Blank data of hypoid pinion

(2) Initial basic machine-tool settings

(3) Coordinates of theoretical surface Z

(4) Projections of surface unit normal

(5) Coordinates of real surface E" (obtained by measurements)

(6) Corrected machine-tool settings

(7) Corrections of machine-tool settings
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Appendix A

Table A.I: RESULTS OF MINIMIZATION FOR DANA HYPOID GEAR

INPUT DATA •

Pressure Angle aa 21.25 °

Cutter diameter 228.6mm

Point Width of Cutter 2.032mm

BASIC MACHINE-TOOL SETTINGS :

V2 (Vertical Setting) 103.25255mm

H2(Horizontal Setting) 27.4666mm

7_)(Machine Root Angle) 60.723 °

AXm(Machine Center to Back) 0.009677mm

CORRECTIONS OF MACHINE-TOOL SETTINGS REQUIRED :

V2 (Vertical Setting) - 0.00036 lmm

H2(Horizontal Setting) - 0.250553mm

7_)(Machine Root Angle) 0.260867 °

_Xm(Machine Center To Back) -0.543113turn

CORRECTED MACHINE-TOOL SETTINGS:

V2 (Vertical Setting) 103.2522rnrn

H2(Horizontal Setting) 27.21603mm

7_)(Machine Root Angle) 60.98391 °

AXm(Machine Center to Back) -0.53343mm ]]
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Table A.2 Coordinates o[ Theoretical Sur[ace (Convex Side)

(represented in Sm (Fig. 3.2))

XT (inch) ¥T (inch) ZT (inch)

I I 3.128970 0.2903200 -1.660430

l 2 3.149190 0.2766600 -1.612140

1 3 3.169320 0.2630300 -1.563840

1 4 3.189390 0.2494500 -1.515550

I 5 3.209370 0.2358900 -1.467260

2 1 3.247090 0.2322700 -1.715660

2 2 3.267980 0.2179600 -1.664110

2 3 3.288790 0.2036900 -1.612550

2 4 3.309520 0.1894600 -1.561000

2 5 3.330190 0.1752700 -1.509450

3 1 3.364070 0.1699200 -1.770890

3 2 3.385620 0.1549900 -1.716080
3 3 3.407080 0.1401000 -1.661260

3 4 3.428470 0.1252500 -1.606450

3 5 3.449790 0.1104400 -1.551640

4 1 3.479810 0.1032600 -1.826120

4 2 3.501990 0.8771000E-01 -1.768050

4 3 3.524090 0.7221000E-01 -1.709970

4 4 3.546120 0.5676000E-01 -I.651900

4 5 3.568090 0.4134000E-01 -I.593830

5 1 3.59_170 0.32230OOE-01 -1.881350
5 2 3.616970 0.1609000E-01 -1.820020

5 3 3.639700 O.O000000E÷O0 -1.758680

5 4 3.662360 -0.1605000E-01 -1.697350

5 5 3.684950 -0.3206000E-01 -1.636020

6 1 3.707040 -0.4318000E-01 -1.936580

6 2 3.730450 -0.5990000E-01 -1.871980
6 3 3.753790 -0.7658000E-01 -1.807390

6 4 3.777060 -0.9322000E-01 -I.742800
6 5 3.800270 -0.1098100 -1.678210

7 1 3.818290 -0.1230000 -1.991800

7 2 3.842300 -0.1403100 -1.923950

7 3 3.866230 -0.1575700 -I.856100

7 4 3.890110 -0.1747800 -1.788260

7 5 3.913920 -0.1919500 -1.720410

8 1 3.927780 -0.2072700 -2.047030
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8
8
8
8

3.952370

3.976900

4.001360

4.025760

-0.2251500

-0.2429900

-0.2607900

-0.2785400

-1.975920

-1.904810

-1.833710

-1.762600

4.035380

4.060540

4.085640

4.110680

4.135660

-0.2960100

-0.3144800

-0.3329100

-0.3512900

-O.3696300

-2.102260

-2.027890

-1.953520
-1.879160

-1.804790
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Table A.3 Coordinates o£ Theoretical S_r_ace (Concave Side)

(represented in Sm (Fig. 3.2))

XT (inch) YT (inch) ZT (inch)

I0 1 3.133200 0.1974800 -1.666550

10 2 3.150790 0.2285300 -1.616730
I0 3 3.168110 0.2595400 -1.566910

I0 4 3.185160 0.2904800 -1.517080

10 5 3.201940 0.3213800 -1.467260

II I 3.249620 0.1343800 -1.721780

11 2 3.268670 0.1681800 -1.668700

Ii 3 3.287400 0.2019200 -1.615620

II 4 3.305810 0.2356100 -1.562530

11 5 3.323910 0.2692400 -1.509450

12 I 3.364720 0.6628000E-01 -1.777010

12 2 3.385350 0.1029300 -1.720670

12 3 3.405610 0.1395300 -1.664330
12 4 3.425490 0.1760700 -1.607980

12 5 3.445010 0.2125400 -1.551640

13 I 3.478340 -0.6930000E-02 -1.832240

13 2 3.500690 0.3269000E-01 -1.772640
13 3 3.522590 0.7226000E-01 -1.713040

13 4 3.544070 0.1117600 -1.653440

13 5 3.565120 0.1511900 -1.593830

14 I 3.590310 -0.8535000E-01 -1.887470
14 2 3.614510 -0.4265000E-01 -1.824610

14 3 3.638210 O.O000000E+00 -1.761750

14 4 3.661400 0.4258000E-01 -1.698890

14 5 3.684110 0.8508000E-01 -1.636020

15 1 3.700440 -0.1691000 -1.942700

15 2 3.726650 -0.1232100 -1.876580

15 3 3.752280 -0.7736000E-01 -1.810460

15 4 3.777330 -0.3159000E-01 -1.744340

15 5 3.801830 0.1411000E-OI -1.678210

16 I 3.808520 -0.2583200 -1.997930

16 2 3.836920 -0.2091100 -1.928550

16 3 3.864640 -0.1599500 -1.859170

16 4 3.891700 -0.1108600 -1.789790

16 5 3.918130 -0.6185000E-01 -1.720410

17 I 3.914360 -0.3531200 -2.053160
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17
17
17
17

2
3
4
5

3.945110

3.975100
4.004340

4.032850

-0.3004800

-0.2478900

-0.1953600

-0.1429100

-1.980520

-1.907880

-1.835240

-1.762600

18
18
18
18
18

I

2

3

4

5

4.017700
4.051000

4.083450

4.115050

4.145820

-0,4536600

-0.3974800

-0.3413300

-0.2852300
-0.2292100

-2.108390

-2.032490

-1.956590

-1.880690

-1.804790
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Table A.4 Pro_ectlons of Sur[ace Unit Normal (Convex Side)
(represented in Sm (Fig. 3.2))

XN (inch) YN (_nch) ZN (inch)

1 1 0.4496000 0.8910000 0.6380000E-01
1 2 0.4500000 0.8908000 0.6360000E-01

I 3 0.4504000 0.8906000 0.6350000E-01

I 4 0.4508000 0.8904000 0.6330000E-01

I 5 0.4512000 0.8902000 0.6310000E-01

2 I 0.4743000 0.8789000 0.5180000E-01

2 2 0.4747000 0.8786000 0.5150000E-01

2 3 0.4751000 0.8784000 0.5130000E-01

2 4 0.4755000 0.8782000 0.5110000E-01

2 5 0.4759000 0.8780000 0.5090000E-01

3 l 0.4988000 0.8658000 0.3990000E-01

3 2 0.4992000 0.8656000 0.3960000E-01
3 3 0.4997000 0.8653000 0.3940000E-01

3 4 0.5001000 0.8651000 0.3920000E-01

3 5 0.5006000 0.8648000 0.3900000E-01

4 I 0.5231000 0.8518000 0.2820000E-01

4 2 0,5236000 0.8515000 0.2790000E-01

4 3 0.5241000 0.8512000 0.2770000E-01

4 4 0.5246000 0.8509000 0.2750000E-01

4 5 0.5251000 0.8506000 0.2720000E-01

5 I 0.5472000 0.8368000 0.1670000E-01

5 2 0.5478000 0.8365000 0.1650000E-01

5 3 0.5483000 0.8361000 0.1620000E-01

5 4 0.5489000 0.8358000 0.1600000E-OI

5 5 0.5494000 0.8354000 0.1570000E-01

6 1 0.5711000 0.8208000 0.5500000E-02
6 2 0.5717000 0.8204000 0.5200000E-02
6 3 0.5723000 0.8200000 0.5000000E-02

6 4 0.5729000 0.8196000 0.4700000E-02

6 5 0.5735000 0.8192000 0.4400000E-02

7 I 0.5947000 0.8039000 -0.5400000E-02

7 2 0.5954000 0.8034000 -0.5700000E-02

7 3 0.5961000 0.8029000 -0.6000000E-02

7 4 0.5967000 0.8024000 -0.6300000E-02

7 5 0.5974000 0.8019000 -0.6700000E-02

8 I 0.6180000 0.7860000 -0.1610000E-01
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8
8
8
8

0.6188000
0.6195000
0.6203000
0.6210000

0.7854000
0.7848000
0.7842000
0.7836000

-0.1640000E-01
-0.1680000E-01
-0.1710000E-01
-0.1740000E-01

9
9
9
9
9

0.6410000
0.6419000
0.6427000
0.6435000
0.6444000

0.7671000
0.7664000
0.7656000
0.7649000
0.7642000

-0.2640000E-01
-0.2680000E-01
-0.2720000E-01
-0.2760000E-01

-0.2790000E-01
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Table A.5 Project;ons o_ SurEace Unit Normal (Concave Side)
(represented _n Sm (F_g. 3.2))

XN (inch) YN (inch) ZN (_nch)

10 1 -0.1557000 -0.8123000 0.5620000
10 2 -0.1524000 -0.8141000 0.5604000
10 3 -0.1492000 -0.8159000 0.5587000
10 4 -0.1459000 -0.8176000 0.5570000
10 5 -0.1426000 -0.8193000 0.5553000

11 1 -0.1789000 -0.7991000 0.5740000
11 2 -0.1753000 -0.8012000 0.5721000
11 3 -0.1718000 -0.8033000 0.5703000
11 4 -0.1682000 -0.8053000 0.5685000
11 5 -0.1646000 -0.8073000 0.5667000

12 I -0.2019000 -0.7850000 0.5857000

12 2 -0.1981000 -0.7874000 0.5838000

12 3 -0.1943000 -0.7898000 0.5818000

12 4 -0.1904000 -0.7922000 0.5799000
12 5 -0.1865000 -0.7945000 0.5779000

13 1 -0.2248000 -0.7699000 0.5973000
13 2 -0.2207000 -0.7727000 0.5952000
13 3 -0.2166000 -0.7754000 0.5931000
13 4 -0.2124000 -0.7782000 0.5911000
13 5 -0.2083000 -0.7809000 0.5889000

14 1 -0.2475000 -0.7538000 0.6087000
14 2 -0.2431000 -0.7570000 0.6065000
14 3 -0.2387000 -0.7602000 0.6043000
14 4 -0.2343000 -0.7633000 0.6021000
14 5 -0.2298000 -0.7664000 0.5999000

15 1 -0.2699000 -0.7367000 0.6200000
15 2 -0.2653000 -0.7404000 0.6176000
15 3 -0.2606000 -0.7440000 0.6153000
15 4 -0.2559000 -0.7475000 0.6110000
15 5 -0.2512000 -0.7510000 0.6106000

16 1 -0.2922000 -0.7187000 0.6310000
16 2 -0.2872000 -0.7228000 0.6285000
16 3 -0.2823000 -0.7268000 0.6261000
16 4 -0.2773000 -0.7309000 0.6236000
16 5 -0.2724000 -0,7348000 0.6216000

17 I -0.3141000 -0.6996000 0.6418000
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17

17

17

17

2

3

4

5

-0.3090000

-0.3038000

-0.2986000

-0.2933000

-0.7042000

-0.7088000

-0.7133000

-0.7177000

0.6393000

0.6367000

0.6341000

0.6315000

18
18
18
18
18

-0.3359000

-0.3304000

-0.3250000

-0.3195000

-0.3140000

-0.6794000

-0.6846000

-0.6897000

-0.6947000

-0.6997000

0.6524000

0.6497000
0.6471000

0.6444000
0.6417000
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Table A.6 Coordinates of Real Tooth Surface (Convex Side)

(represented in Sm (Fig. 3.2))

XM (inch) YM (inch) ZH (inch)

I i 3.129490 0.2913500 -1.660350

I 2 3.149700 0.2776800 -1.612060

i 3 3.169750 0.2638600 -1.563780

I 4 3.189690 0.2500400 -1.515510

1 5 3.209520 0.2361800 -1.467240

2 I 3.247520 0.2330600 -1.715610

2 2 3.268290 0.2185300 -1.664070

2 3 3.289010 0.2041000 -1.612530

2 4 3.309610 0.1896300 -I.560990

2 5 3.330130 0.1751800 -1.509460

3 1 3.364450 0.1705700 -1.770860

3 2 3.385850 0.1553900 -1.716060

3 3 3.407190 0.1402900 -I.661260

3 4 3.428470 0.1252400 -1.606450
3 5 3.449590 0. II01000 -1.551660

4 I 3.480060 0.1036700 -1.826100

4 2 3.502140 0.8796000E-01 -I.768040
4 3 3.524200 0.7239000E-01 -1.709970

4 4 3.546040 0.5661000E-01 -1.651910

4 5 3.567790 0.4086000E-01 -1.593850

5 I 3.594330 0.3248000E-01 -1.881340
5 2 3.617010 0.1615000E-01 -1.820010

5 3 3.639690 -0.2000000E-04 -1.758680

5 4 3.662250 -0.162200OE-01 -1.697360

5 5 3.684770 -0.323300OE-01 -i.636030

6 I 3.707180 -0.4297000E-01 -1.936570

6 2 3.730500 -0.5983000E-01 -1.871980

6 3 3.753810 -0.7655000E-01 -1.807390

6 4 3.777040 -0.9324000E-01 -1.742800

6 5 3.800210 -0. I098800 -1.678210

7 I 3.818310 -0.1229700 -1.991800

7 2 3.842330 -0.1402600 -1.923950

7 3 3.866260 -0.1575300 -1.856100

7 4 3.890240 -0.1746000 -1.788260

7 5 3.914230 -0.1915300 -1.720410

8 I 3.927840 -0.2071900 -2.047030
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8
8
8
8

3.952510

3.977000

4.001410

4.025690

-0.2249800

-0.2428600

-0.2607300

-0.2786400

-1.975930

-1.904820

-1.833710

-1.762590

4.035370
4.060560

4.085710

4.110690

4.135620

-0.2960200

-0.3144600

-0.3328300

-0.3512800
-0.3696800

-2.102260

-2.027890

-1.953530

-1.879160

-1.804780
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Table A.7 Coordlnates of Reat Tooth Surface (Concave Side)

(represented in Sm (Fig. 3.2))

XH (inch) YH (inch) ZH (inch)

I0 I 3.132990 0.1964100 -1.665810

I0 2 3.150610 0.2275400 -1.616050

I0 3 3.167920 0.2585200 -1.566210

lO 4 3.184990 0.2895700 -1.516460

I0 5 3.201810 0.3206400 -1.466760

II I 3.249400 0.1334300 -1.721100

II 2 3.268500 0.1673900 -1.668130

11 3 3.287250 0.2012300 -1.615120

11 4 3.305660 0.2349100 -1.562040

11 5 3.323800 0.2687000 -1.509070

12 I 3.364540 0.6559000E-01 -1.776500
12 2 3.385210 0.1023500 -1.720240

12 3 3.405490 0.1390500 -1.663970

12 4 3.425410 0.1757200 -1.607730

12 5 3.444970 0.2123700 -1.551520

13 I 3.478190 -0.7460000E-02 -1.831830

13 2 3.500600 O.3238000E-01 -1.772390

13 3 3.522530 O.7202000E-01 -1.712860

13 4 3.544050 0.1116800 -1.653370
13 5 3.565170 0.1513600 -I.593960

14 I 3.590180 -0.8574000E-01 -1.887160

14 2 3.614450 -0.4283000E-01 -1.824460
14 3 3.638200 -0.1000000E-04 -1.761740

14 4 3.661460 0.4279000E-01 -1.699050

14 5 3.684250 0.8554000E-01 -1.636390

15 I 3.700360 -0.1693200 -1.942510

15 2 3.726640 -0.1232300 -1.876550

15 3 3.752350 -0.7716000E-01 -I.810620
15 4 3.777450 -0.3124000E-01 -1.744620

15 5 3.802060 0.1480000E-01 -1.678780

16 1 3.808470 -0.2584400 -1.997820
16 2 3.836960 -0.2090000 -1.928640
16 3 3.864780 -0. i596000 -1.859460

16 4 3.891920 -0.1102900" -1.790270

16 5 3.918530 -0.6077000E-01 -1.721310

17 1 3.914340 -0.3531600 -2.053120
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17

17

17

17

2

3

4

5

3.945230

3.975310

4.004620

4.033320

-0.3002000

-0.2474000

-0.1946900

-0.1417500

-1.980770

-1.908320

-1.835830

-1.763610

18

18

18

18

18

4.017820

4.051260

4.083780

4.115450

4.146320

-0.4534000

-0.3969500

-0.3406200

-0.2843600

-0.2280800

-2.108630

-2.032980

-1.957250

-1.881500
-1.805820
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TABLE B.I. BLANK DATA OF HYPOID PINION *

NUMBER OF TEETH: 13

SHAFT ANGLE: 1.57079 radians

PITCH DIAMETER: 88.22 mm

OUTSIDE DIAMETER: I03.96 mm

PITCH ANGLE: 0.32055 radians

FACE ANGLE: 0.41480 rad_ans

ROOT ANGLE: 0.30136 rad_ans

MEAN SPIRAL ANGLE: 0.84677 rad_ans

FACE WIDTH: 38.30 mm

WHOLE WIDTH: II.63 mm

HAND OF SPIRAL: R.H.
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*TABLE B.2 BASIC PINION MACHINE-TOOL SETTINGS (CONCAVE SIDE)*

BASIC TILT ANGLE :

SWIVEL ANGLE :

MACHINE ROOT ANGLE :

CRADLE ANGLE :

RADIAL SETTING :

CI = 0.4104054 radians

CJ = 6.000656 radians

RGMAIM - 6.229372 radians

QC = 1.566173 radlans

SR - 109.6660 mm

SLIDING BASE : DELTB - 14.B2000 mm

MACHINE CENTER TO BACK:DELTA - -3.100000 mm

BLANK OFFSET : EM = -34.58000 mm

CUTTING RATIO : FMI - 0.3230215

CUTTER POINT RADIUS : RCF _ 113.0300 mm

CUTTER BLADE ANGLE : PHIVIC = 0.2443461 radians
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Table B.3 Coordinates o_ Theoretical Surface (Concave Side)

(represented in Sm (Fig. 3.2))

XT (inch) YT (inch) ZT (inch)

I I 1.182150 0.5780900 -2.843880

1 2 1.209360 0.6126500 -2.830410

1 3 1.234970 0.6497300 -2.816930

1 4 1.258970 0.6891100 -2.803460

I 5 1.281330 0.7306100 -2.789990

2 I 1.288970 0.4359300 -2.987910

2 2 1.323870 0.4692300 -2.973160

2 3 1.357280 0.5057100 -2.958410

2 4 1.389190 0.5450800 -2.943660
2 5 1.419540 0.5871400 -2.928910

3 1 1.376770 0.2825600 -3.131950

3 2 1.419280 0.3132400 -3.115920
3 3 1.460570 0.3477800 -3.099890

3 4 1.500570 0.3858300 -3.083860

3 5 1.539180 0.4271500 -3.067830

4 1 1.445230 0.1203900 -3.275980
4 2 1.495080 0.1471400 -3.258680

3 1.544110 0.1784300 -3.241370

4 4 1.592160 0.2138500 -3.224060

4 5 1.639110 0.2531100 -3.206760

5 I 1.494220 -0.4833000E-01 -3.420020

5 2 1.550950 -0.2678000E-01 -3.401440

5 3 1.607360 0.0000000E+00 -3.382850

5 4 1.663240 0.3151000E-01 -3.364260

5 5 1.718400 0.6741000E-01 -3.345680

6 1 1.523750 -0.2215400 -3.564050

6 2 1.586690 -0.2063300 -3.544190

6 3 1.649960 -0.1852600 -3.524330

6 4 1.713260 -0.1589100 -3.504460

6 5 1.776320 -0.1276300 -3.484600

7 1 1.533930 -0.3972700 -3.708090
7 2 1.602270 -0.3894600 -3.686950

7 3 1.671710 -0.3752200 -3.665810
7 4 1.741850 -0.3551800 -3.644660
7 5 1.812330 -0.3297300 -3.623520

8 1 1.524960 -0.5736900 -3.852120
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1.597730

1.672520

1.748770

1.826030

-0.5742300

-0.5678200

-0.5551500

-0.5366800

-3.829700

-3.807290

-3.784870

-3.762440

1

2

3

4

5

1.497150

1.573260

1.652420

1.733910

1.817170

-0.7490500

-0.7587500

-0.7610400

-0.7567400

-0.7462900

-3.996160
-3.972460

-3.948760
-3.925070

-3.901370
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Table B.4 Projections o_ SurEace Unit Normal (Concave S_de)

(represented in Sm (Fig. 3.2))

XN (_nch) YN (inch) ZN (_nch)

1 I 0.2974000 -0.5635000 0.7707000

I 2 0.3205000 -0.5308000 0.7846000

I 3 0.3390000 -0.5003000 0.7967000

I 4 0.3540000 -0.4716000 0.8076000

I 5 0.3662000 -0.4445000 0.8175000

2 1 0.2173000 -0.6032000 0.7674000

2 2 0.2467000 -0.5716000 0.7826000

2 3 0.2704000 -0.5419000 0.7958000

2 4 0.2899000 -0.5138000 0.8074000

2 5 0.3061000 -0.4871000 0.8180000

3 I 0.1340000 -0.6303000 0.7647000
3 2 0.1696000 -0.6008000 0.7812000

3 3 0.1984000 -0.5728000 0.7953000

3 4 0.2223000 -0.5460000 0.8077000
3 5 0.2424000 -0.5203000 0.8189000

4 I 0.4920000E-01 -0.6450000 0.7626000

4 2 0.9090000E-01 -0.6187000 0.7804000

4 3 0.1246000 -0.5932000 0.7954000
4 4 0.1527000 -0.5684000 0.8085000

4 5 0.1764000 -0.5443000 0.8202000

5 I -0.3530000E-01 -0.6479000 0.7609000

5 2 0.1210000E-01 -0.6257000 0.7800000

5 3 0.5030000E-01 -0.6033000 0.7959000

5 4 0.8220000E-01 -0.5811000 0.8096000
5 5 0.1093000 -0.5592000 0.8218000

6 i -0.1182000 -0.6395000 0.7597000

6 2 -0.6550000E-01 -0.6222000 0.7801000

6 3 -0.2320000E-01 -0.6038000 0.7968000

6 4 0.1210000E-01 -0.5847000 0.8112000

6 5 0.4220000E-01 -0.5653000 0.8238000

7 I -0.1983000 -0.6203000 0.7589000

7 2 -0.1408000 -0.6090000 0.7806000

7 3 -0.9480000E-01 -0.5949000 0.7982000

7 4 -0.5650000E-01 -0.5794000 0.8131000

7 5 -0.2380000E-01 -0.5630000 0.8261000

8 1 -0.2742000 -0.5913000 0.7584000

L
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-0.2126000
-0.1637000
-0.1228000
-0.8790000E-01

-O.5865OOO

-0.5774000

-0.5659000

-0.5528000

0.7815000
0.7999000
0.8153000
0.8287000

9

9

9

9

9

-0.3452000

-0.2800000

-0.2287000
-0.1859000

-0.1492000

-0.5531000

-0.5557000

-0.5520000

-0.5447000

-0.5352000

0.7582000
0.7828000
0.8019000
0.8178000
0.8315000
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Table B.5 Coordinates of Real Tooth Surface (Concave Side)

(represented in Sm (Fig. 3.2))

XH (inch) YH (inch) ZH (inch)

1 1 1.182490 0.5774400 -2.843000

1 2 1.209710 0.6120800 -2.829570

I 3 1.235370 0.6491400 -2.816000

I 4 1.259370 0.6885800 -2.802550

1 5 1.281660 0.7302100 -2.789240

2 1 1.289150 0.4354400 -2.987290

2 2 1.324080 0.4687300 -2.972470

2 3 1.357500 0.5052700 -2.957760

2 4 1.389440 0.5446400 -2.942970

2 5 1.419790 0.5867400 -2.928240

3 1 1.376840 0.2822200 -3.131530

3 2 1.419380 0.3129000 -3.115470

3 3 1.460680 0.3474600 -3.099450

3 4 1.500700 0.3855100 -3.083390

3 5 1.539330 0.4268400 -3.067350

4 I 1.445240 0.1202400 -3.275810

4 2 1.495120 0.1468700 -3.258340

4 3 1.544150 0.1782300 -3.241110

4 4 1.592220 0.2136500 -3.223780

4 5 1.639160 0.2529300 -3.206490

5 I 1.494220 -0.4821000E-01 -3.420160

5 2 1.550940 -0.2677000E-01 -3.401440

5 3 1.607360 -0.3000000E-04 -3.382810

5 4 1.663250 0.3146000E-01 -3.364200

5 5 1.718400 0.6741000E-01 -3.345680

6 1 1.523800 -0.2212400 -3.564410

6 2 1.586700 -0.2061600 -3.544400

6 3 1.649970 -0.1850500 -3.524610

6 4 1.713260 -0.1587900 -3.504630

6 5 1.776310 -0.1274600 -3.484840

7 1 1.534060 -0.3968400 -3.708610

7 2 1.602350 -0.3891100 -3.687400

7 3 1.671760 -0.3749500 -3.666170

7 4 1.741880 -0.3548900 -3.645060

7 5 1.812340 -0.3294500 -3.623940

8 1 1.525250 -0.5730800 -3.852910
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8

8
8
8

9

9

9

9

9

2 1.597910 -0.5737500 -3.830330

3 1.672650 -0.5673700 -3.807900

4 1.748860 -0.5547300 -3.785470

5 1.826090 -0.5362900 -3.763030

I 1.497600 -0.7483300 -3.997150

2 1.573590 -0.7580900 -3.973390

3 1.652680 -0.7604100 -3.949680
4 1.734090 -0.7562000 -3.925870

5 1.817310 -0.7457900 -3.902150
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* TABLEB.6 CORRECTEDMACHINE-TOOLSETTINGS(CONCAVESIDE) *
************************************************************

BASIC TILT ANGLE :

SWIVEL ANGLE :

MACHINE ROOT ANGLE :

CRADLE ANGLE :

RADIAL SETTING :

CI = 0.4360375 radians

CJ = 6.042021 radians

RGMAIM = 6.202894 radians

QC = 1.573228 radians

SR = 110.4463 mm

SLIDING BASE : DELTB = 14.82000 mm

MACHINE CENTER TO BACK:DELTA = -3.970493 mm

BLANK OFFSET : EM = -35.45049 mm

CUTTING RATIO : FMI = 0.3230215

CUTTER POINT RADIUS : RCF = 113.0300 mm

CUTTER BLADE ANGLE : PHIVIC = 0.2443461 radlans

* TABLE B.7 CORRECTIONS OF MACHINE-TOOL SETTINGS (CONCAVE SIDE) *

BLANK OFFSET: EM =-0.8704924

MACHINE CENTER TO BACK:DELTA =-0.5540259

SLIDING BASE :

MACHINE ROOT ANGLE :

RADIAL SETTING :

CRADLE ANGLE :

SWIVEL ANGLE :

TILT ANGLE :

mm

mm

DELTB - 0.0000000E+00 mm

RGMAIM =-0.2647799E-01 radians

SR = 0.7803197 mm

QC = 0.7054806E-02 radians

CJ = 0.4136530E-01 radians

CI = 0.2563208E-01 radians
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******************************************
* TABLEC.I. BLANKDATAOFHYPOIDPINION*

NUMBER OF TEETH: 13

SHAFT ANGLE: 1.57079 radlans

PITCH DIAHETER: 88.22 mm

OUTSIDE DIAMETER: 103.96 mm

PITCH ANGLE: 0.32055 radlans

FACE ANGLE: 0.41480 radlans

ROOT ANGLE: 0.30136 radians

MEAN SPIRAL ANGLE: 0.84677 radians

FACE WIDTH: 38.30 mm

WHOLE WIDTH: 11.63 mm

HAND OF SPIRAL: R.H.

*TABLE C.2 BASIC PINION MACHINE-TOOL SETTINGS (CONVEX SIDE)*
*************************************************************

BASIC TILT ANGLE :

SWIVEL ANGLE :

MACHINE ROOT ANGLE :

CRADLE ANGLE :

RADIAL SETTING :

Cl = 0.3761899 radlans

CJ = 5.766247 radians

RGMAIM = 6.233736 radlans

QC = 1.436986 radians

SR = 114.0236 mm

SLIDING BASE : DELTB = 23.87000 mm

MACHINE CENTER TO BACK:DELTA = 3.280000 mm

BLANK OFFSET : EH = -40.12000 mm

CUTTING RATIO : FHI = 0.3020446

CUTTER POINT RADIUS : RCF = 114.9350 mm

CUTTER BLADE ANGLE : PHIVIC =-0.5410521 radians
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Table C.3 Coordinates oE Theoretical Surface (Convex Side)

(represented in Sm (Fig. 3.2))

XT (inch) YT (inch) ZT (inch)

I 1 1.135060 0.6650000 -2.844010

I 2 1.185910 0.6562700 -2.830500
1 3 1.238650 0.6422500 -2.817000
1 4 1.292890 0.6229000 -2.803490
1 5 1.348280 0.5981000 -2.789990

2 I 1.247700 0.5418800 -2.988040
2 2 1,302600 0.5245800 -2.973260

2 3 1.358830 0.5009600 -2.958480
2 4 1.415930 0.4709600 -2.943690
2 5 1.473440 0.4345000 -2.928910

3 I 1.345050 0.4062200 -3.132080

3 2 1.402710 0.3794500 -3.116020

3 3 1.460940 0.3453500 -3.099950

3 4 1.519180 0.3039000 -3.083890
3 5 1.576860 0.2550400 -3.067830

4 I 1.426350 0.2598200 -3.276110
4 2 1.485380 0.2228700 -3.258770

4 3 1.543990 0.1776600 -3.241430

4 4 1.601550 0.1242000 -3.224090

4 5 1.657360 0.6251000E-01 -3.206760

5 I 1.490940 0.1043900 -3.420150

5 2 1.549840 0.5674000E-01 -3.401530

5 3 1.607160 0.0000000E+O0 -3.382910
5 4 1.662140 -0.6574000E-01 -3.364290

5 5 1.713980 -0.1403800 -3.345680

6 I 1.538250 -0.5840000E-01 -3.564180

6 2 1.595460 -0.1170800 -3.544290

6 3 1.649730 -0.1855400 -3.524390

6 4 1.700200 -0.2635800 -3.504500

6 5 1.745960 -0.3510200 -3.484600

7 1 1.567790 -0.2269300 -3.708220

7 2 1.621680 -0.2967900 -3.687040

7 3 1.671120 -0.3769300 -3.665870

7 4 1.715140 -0.4670500 -3.644700

7 5 1.752700 -0.5668300 -3.623520

8 1 1.579130 -0.3995700 -3.852250
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2

3

4

5

1.628050
1.670840
1.706440

1.733720

-0.4805600
-0.5721400
-0.6738600
-0.7852500

-3.829800
-3.807350

-3.784900
-3.762440

1.571890
1.614130
1.648460
1.673700
1.688670

-0.5747300
-0.6666000
-0.7691300
-0.8817200

-1.003710

-3.996290
-3.972560
-3.948830
-3.925100
-3.901380
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Table C.4 Pro_ections o_ Surface Un£t Norma! (Convex S£de)

(represented in Sm (Fig. 3.2))

XN (_nch) YN (_nch) ZN (inch)

1 I 0.2346000 0.8427000 -0.4846000

1 2 0.3030000 0.8339000 -0.4614000
i 3 0.3662000 0.8201000 -0.4397000

1 4 0.4255000 0.8021000 -0.4190000

1 5 0.4816000 0,7803000 -0.3990000

2 l 0.3421000 0.8087000 -0.4785000

2 2 0.4113000 0.7899000 -0.4549000

2 3 0.4747000 0.7664000 -0.4327000

2 4 0.5336000 0.7389000 -0.4114000

2 5 0.5887000 0.7076000 -0.3908000

3 I 0.4408000 0.7622000 -0.4741000

3 2 0.5093000 0.7335000 -0.4502000

3 3 0.5714000 0.7005000 -0.4276000

3 4 0.6283000 0.6636000 -0.4059000

3 5 0.6809000 0.6232000 -0.3848000

4 1 0.5301000 0.7050000 -0.4712000

4 2 0.5964000 0.6666000 -0.4471000

4 3 0.6558000 0.6245000 -0.4243000

4 4 0.7094000 0.5788000 -0.4022000

4 5 0.7580000 0.5297000 -0.3807000

5 I 0.6097000 0.6386000 -0.4695000

5 2 0.6725000 0.5911000 -0.4454000
5 3 0.7278000 0.5403000 -0.4224000

5 4 0.7768000 0.4864000 -0.4001000

5 5 0.8200000 0.4294000 -0.3783000

6 I 0.6792000 0.5646000 -0.4689000

6 2 0.7372000 0.5086000 -0.4448000

6 3 0.7873000 0.4498000 -0.4217000

6 4 0.8305000 0.3884000 -0.3993000

6 5 0.8674000 0.3244000 -0.3774000

7 1 0.7386000 0.4842000 -0.4692000

7 2 0.7906000 0.4203000 -0.4453000

7 3 0.8343000 0.3543000 -0.4223000

7 4 0.8707000 0.2863000 -0.3999000

7 5 0.9003000 0.2163000 -0.3779000

8 I 0.7874000 0.3985000 -0.4703000
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0.8325000
0.8690000
0.8976000
0.9190000

0.3276000
0.2554000
0.1817000
0.1067000

-0.4467000
-0.4239000
-0.4015000

-0.3795000

9

9
9

9

9

0.8258000

0.8630000

0.8913000

0.9115000

0.9240000

0.3086000
0.2317000
0.1542000
0.7600000E-01

-0.2900000E-02

-0.4721000
-0.4489000
-0.4264000
-0.4042000
-0.3823000
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Table C.5 Coordinates o[ Real Tooth Surface (Convex Side)

(represented in Sm (Fig. 3.2))

XH (inch) YH (inch) ZH (inch)

1 1 1.134810 0.6641100 -2.843490

1 2 1.185630 0.6554900 -2.830070

1 3 1.238350 0.6416000 -2.816650

1 4 1.292550 0.6222500 -2.803160

1 5 1.347930 0.5975300 -2.789700

2 1 1.247430 0.5412600 -2.987670
2 2 1.302300 0.5240200 -2.972940

2 3 1.358550 0.5005100 -2.958230
2 4 1.415620 0.4705300 -2.943460

2 5 1.473150 0.4341400 -2.928720

3 1 1.344770 0.4057300 -3.131770

3 2 1.402440 0.3790600 -3.115780
3 3 1.460690 0.3450500 -3.099770

3 4 1.518920 0.3036200 -3.083730

3 5 1.576620 0.2548100 -3.067690

4 1 1.426120 0.2595100 -3.275900

4 2 1.485140 0.2226000 -3.258590

4 3 1.543780 0.1774500 -3.241290
4 4 1.601460 0.1241300 -3.224050

4 5 1.657190 0.6240000E-01 -3.206670

5 1 1.490820 0.1042600 -3.420050

5 2 1.549730 0.56650OOE-01 -3.401460

5 3 1.607140 -0.1000000E-04 -3.382900

5 4 1.662070 -0.6578000E-01 -3.364260

5 5 1.713940 -0.1404000 -3.345660

6 I 1.538180 -0.5846000E-01 -3.564130

6 2 1.595550 -0.1170200 -3.544340

6 3 1.649770 -0.1855100 -3.524410

6 4 1.700370 -0.2635000 -3.504580

6 5 1.746120 -0.3509600 -3.484670

7 1 1.567970 -0.2268100 -3.708330

7 2 1.621870 -0.2966800 -3.687150

7 3 1.671390 -0.3768100 -3.666010

7 4 1.715480 -0.4669400 -3.644850

7 5 1.753020 -0.5667500 -3.623650

8 1 1.579410 -0.3994300 -3.852420
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8
8
8
8

1.628470
1.671260
1.706890
1.734280

-0.4803900
-0.5720100
-0.6737700

-0.7851800

-3.830030

-3.807550
-3.785100
-3.762670

1.572400

1.614710

1.649080

1.674320

1.689350

-0.5745400

-0.6664400
-0.7690200

-0.8816700

-I.003710

-3.996570
-3.972860
-3.949120
-3.925370
-3.901660
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*_'c******¢_**'I¢***_'¢**********_'¢************_, *_'_**_'_*J,_****_**_****

* TABLE C.6 CORRECTED MACHINE-TOOL SETTINGS (CONVEX SIDE) *

BASIC TILT ANGLE :

SWIVEL ANGLE :

MACHINE ROOT ANGLE :

CRADLE ANGLE :

RADIAL SETTING :

CI = 0.3712125 rad{ans

CJ = 5.768892 radians

RGMAIM = 6.236861 radians

QC = 1.436096 radlans

SR = 113.6455 mm

SLIDING BASE : DELTB = 23.87000 mm

MACHINE CENTER TO BACK:DELTA = 3.767510 mm

BLANK OFFSET : EM = -39.63248 mm

CUTTING RATIO : FMI = 0.3020446

CUTTER POINT RADIUS : RCF = 114.9350 mm

CUTTER BLADE ANGLE : PHIVIC =-0.5410521 radians

* TABLE C.7 CORRECTIONS OF MACHINE-TOOL SETTINGS (CONVEX SIDE) *

BLANK OFFSET: EM = 0.4875103

MACHINE CENTER TO BACK:DELTA = 0.5769074E-01

SLIDING BASE :

MACHINE ROOT ANGLE :

RADIAL SETTING :

CRADLE ANGLE :

SWIVEL ANGLE :

TILT ANGLE :

mm

mm

DELTB = 0.0000000E+00 mm

RGMAIM = 0.3125239E-02 radians

SR =-0.3780939 mm

QC =-0.8908187E-03 radians

CJ = 0.2644968E-02 radlans

CI =-0.4977365E-02 radlans
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